

Impuls: Kabelloser Feldbus

Brauchen wir ein "kabelloses Kabel"?

IRL Kaiserslautern Andreas Weinand, Daniel Lindenschmitt, Michael Karrenbauer

GEFÖRDERT VOM

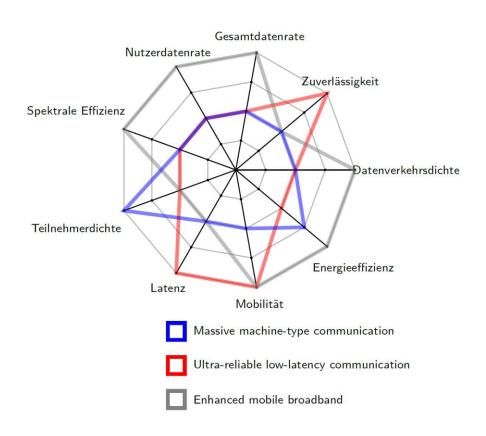
Motivation

- Industry 4.0¹:
 - Anwendung der Konzepte des IoT auf die Fertigung
 - Self-X-Mechanismen
 - Hochflexible Produktion
- Drahtlossysteme haben in diesem Zusammenhang gewisse Vorteile:
 - Geringer Installations- und Wartungsaufwand (vor allem in einem Brownfield-Szenario)
 - Geringes Gewicht
 - Geringere Anfälligkeit für mechanische Belastungen
 - Unterstützung mobiler Anwendungsfälle
- Herausforderung: Bereitstellung einer (im Hinblick auf Latenz und Zuverlässigkeit) vergleichbaren Leistung zu drahtgebundenen Systemen

¹Kagermann, Henning, et al. Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion, 2013.

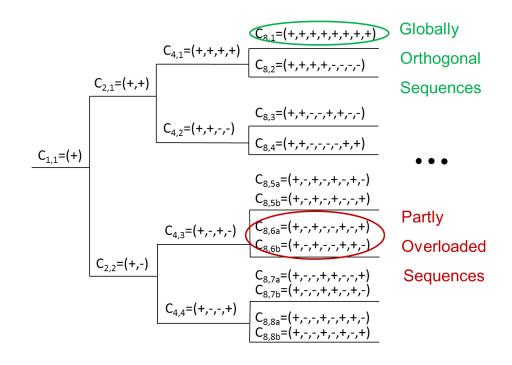
Existierende Funksysteme und deren Einschränkungen

Vergleichssysteme	Diagnose & Wartung		Diskrete Fertigung		Industrielle Anwendungsfälle Lager und Logistik					
	Generell	Condition Monitoring	Generell	Motion Control	Generell	AGV	Kran- szenario	Prozess- automatisierung	Augmented Reality	Funktional Sicherheit
EEE 802.11 (WLAN, IWLAN)	\checkmark	√	X	X		×	×	•		•
EEE 802.15.1 (Bluetooth, WISA)	\checkmark	√	•	×	•	×	•	•	×	•
EEE 802.15.4 (ZigBee, ISA100.11a, Wireless-HART)	\checkmark	•	×	×	•	×	×	•	×	×
_PWAN (LoRa, Sigfox, NB-IoT)	\checkmark	√	×	×	×	X	×	\checkmark	×	×
2G (GSM)	×	×	×	×	×	\times	×	•	X	×
BG (UMTS)	•		\times	\times	X	\times	\times		X	\times
4G (LTE)	\checkmark		X	$\setminus \times /$	\checkmark	•	•	\checkmark		\times

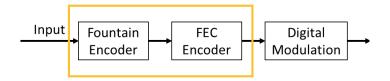

× - Anforderungen werden nicht erfüllt ■ - Anforderungen werden nur für spezifische Anwendungen erfüllt ✓ - Anforderungen werden erfüllt Vergleiche: Aktas et al., "Funktechnologien für industrie 4.0," Jun. 2017.

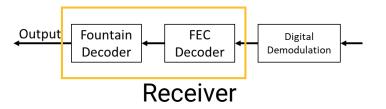
Unzulänglichkeiten heutiger Drahtlossysteme sind insbesondere in den Bereichen Vielfachzugriff 2 und Zuverlässigkeit 3 zu verorten.

Vielfachzugriff


- Anforderungen an das Vielfachzugriffsverfahren:
 - Einerseits: Echtzeitanforderungen
 - Robust Modulationsverfahren (BPSK oder QPSK)
 - Keine Paketwiederholungen
 - Deterministische Ressourcenzuordnung
 - Sehr kurze Pakete
 - Andererseits: best effort traffic (bspw. Updates, Konfigurationen, etc.)
 - Höherstufige Modulation möglich
 - Paketwiederholungen möglich bzw. notwendig
 - Längere Pakete wahrscheinlich
 - Herausforderung: Effiziente gleichzeitige Unterstützung von Echtzeitund Best Effort-Datenverkehr
 - Wünschenswert: Inhärente Broadcast/Multicast-Unterstützung

Lösungsansatz


- Verwendung eines CDMA-basierten Vielfachzugriffsverfahrens:
 - Einfache Implementierung
 - Kein zentraler Scheduler notwendig
 - Keine Sendeverzögerung
 - Möglichkeit der (teilweisen)
 Überladung in Anhängigkeit der Diensteklassen
 - Echtzeitfähigkeit
 - Multiraten-Betrieb möglich


Kanalcodierung

INDUSTRIAL RADIO LAB Germany

- Die Erreichung der Zuverlässigkeitsanforderungen erfordert die konsequente Ausnutzung aller verfügbaren Diversität:
 - Räumliche Diversität
 - Frequenzdiversität
 - Zeitdiversität
- Die Ausgestaltung des Kanalcodierverfahrens ist von besonderer Bedeutung:
 - Es muss die Erfüllung der Zuverlässigkeitsanforderungen gewährleisten.
 - Gleichzeitig muss es nach einer deterministischen Zeitspanne abgeschlossen sein, sodass Echtzeitanforderungen eingehalten werden können.
- Lösungsansatz: Verkettung von Erasure- und Bitfehlercodierung

Transmitter

Fazit

- Ein drahtloser Eins-zu-eins-Ersatz für Feldbussysteme stellt nach wie vor eine technische Herausforderung dar.
- Herausforderungen ergeben sich insbesondere in den Bereichen Vielfachzugriffsverfahren und Kanalcodierung.
- Ursächlich hierfür sind die hohen Anforderungen an Latenz und Zuverlässigkeit einerseits, sowie die kurze Paketlänge andererseits.
- Vielversprechende Lösungsansätze ergeben sich
 - aus der Nutzung von CDMA-Verfahren
 - Aus der Verkettung von Erasure- und Fehlerschutzcodierung